New Acyclic 12-Hydroxygeranylgeraniol-Derived Diterpenoids from the Seeds of *Carpesium triste*

by Xue Gao, Zhan-Xin Zhang, and Zhong-Jian Jia*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China (phone: +860931-8911136; fax: +860931-8912582; e-mail: jiazj@lzu.edu.cn)

Five new acyclic 12-hydroxygeranylgeraniol-derived diterpenoids, *i.e.*, 1-5, were isolated from the seeds of *Carpesium triste*. The structures including the absolute configurations of the new compounds were elucidated by spectroscopic methods. All the compounds, except for **2**, were evaluated for their *in vitro* cytotoxic activity against cultured SMMC-7721 (human hepatoma), HL-60 (human promyelocytic leukemia), and L02 (human hepatocyte) cells.

Introduction. – The genus *Carpesium* (Compositae) has been reported as a rich source of antifungal, antibacterial, and antitumor sesquiterpene lactones [1][2]. Only one cytotoxic acyclic diterpene was reported from *C. divaricatum* [3]. *C. triste* MAXIM is a Chinese herbal medicine that is used to treat sore throat, toothache, urinary-tract infection, diarrhea, and mastitis [4]. Recently, we reported the structure determination of germacranolides and acyclic diterpenes from *C. triste* [5]. This kind of acyclic 12-hydroxygeranylgeraniol-derived diterpenoids was mainly found before in the Atlantic brown alga *Bifurcaria bifurcata* (Phaeophyceae) [6][7]. In a continuation of our phytochemical studies of acyclic diterpenes, we report herein the isolation and structural elucidation of the five acyclic 12-hydroxygeranylgeraniol-derived diterpenoids was for the first time, a series of acyclic 12-hydroxygeranylgeraniol-derived diterpenoids were found in a terrestrial plant. All the compounds, except for **2**, were evaluated against a small panel of human-cancer cell lines for their cytotoxic effects.

Results and Discussion. – The pulverized air-dried seeds of *C. triste* were extracted with MeOH. Extensive purification by column chromatography (silica gel) of the extract afforded compounds 1-5.

Compound **1** has the molecular formula $C_{22}H_{36}O_4$ as deduced by HR-ESI-MS (*m/z* 387.2510 ([*M*+Na]⁺)). The IR spectrum of **1** displayed OH (3410 cm⁻¹), carbonyl (1737 cm⁻¹), and C=C bond (1669 cm⁻¹) absorptions. Analysis of its NMR data (*Tables I* and 2) and circular-dichroism (CD) data of its 4-hydroxybenzoate derivative **1a** enabled us to elucidate the structure of **1** as (2*E*,6*Z*,10*E*,12*R*)-7-[(acetyloxy)methyl]-3,11,15-trimethylhexadeca-2,6,10,14-tetraene-1,12-diol.

The ¹H- and ¹³C-NMR (DEPT) spectra of 1^1) showed resonances for an acetyloxy group (δ (H) 2.05 (s); δ (C) 171.1 (C) and 20.8 (Me)), as well as resonances for four C=C bonds (δ (H) 5.41, 5.37, 5.10 (each

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

br. t, J = 7.2 Hz, 1 H), and 5.39 (br. t, J = 6.8 Hz, 1 H); δ (C) 124.0 (CH), 137.1 (C), 130.3 (CH), 133.4 (C), 125.2 (CH), 138.0 (C), 120.1 (CH), and 134.1 (C)), two oxygenated CH₂ groups (δ (H) 4.12 (d, J = 7.2 Hz) and 4.69 (br. s); δ (C) 58.9 (CH₂) and 61.8 (CH₂)), an oxygenated CH group (δ (H) 3.97 (t, J = 6.8 Hz); δ (C) 76.9 (CH)), and four Me groups (δ (H) 1.71, 1.63, 1.60, and 1.62 (4 br. s); δ (C) 25.7, 17.8, 11.5, and 16.0 (4 Me)). Considering the above information, **1** was deduced to represent an acyclic geranylgeraniol-derived diterpene, with a structure similar to that of bifurcadiol [7], except that a Me group (Me(19)) was absent, and an oxygenated CH₂ and a corresponding acetyloxy group were present. In the HMBC plot, the correlations CH₂(1)/C(2) and C(3), Me(20)/C(2), C(4), and C(3), CH₂(19)/C(6), C(8), C(7), and C=O of Ac, Me(18)/C(10), C(12), and C(11), H–C(12)/C(10), C(14), and C(18), and Me(16)(Me(17))/C(14), C(15), and C(17)(C(16)) were used to establish that **1** is an acyclic geranylgeraniol-derived diterpene. The characteristic ¹³C-NMR signals of the Me groups of linear (*E*)-terpenes resonate at δ *ca.* 16, while those in the (*Z*)-configuration resonate near δ 23 [8]. Thus the (*E*)-configuration at C(2) and C(10) were indicated by the δ (C) of Me(18) and Me(20). The (*Z*)-configuration at C(6) was deduced by an NOE difference spectrum: irradiating H–C(6) enhanced the signals of CH₂(8) by 2.67%.

To deduce the absolute configuration at C(12), compound **1** was 4-hydroxybenzoylated to yield 4-hydroxybenzoate **1a**. The CD spectrum of **1a** showed a negative *Cotton* effect in the $\pi \rightarrow \pi^*$ region around 244 nm, which allowed us to deduce the absolute configuration of **1a** to be (12*R*) [9][10].

The HR-ESI-MS of compound 2 displayed the $[M + Na]^+$ signal at m/z 385.2351 which, in combination with the NMR data (*Tables 1* and 2) suggested a molecular

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

	1	2	3	4	5
$CH_2(1)$ or	4.12 (<i>d</i> ,	9.98 (d,	4.12 (<i>d</i> ,	4.12 (<i>d</i> ,	4.10 (<i>d</i> ,
H-C(1)	J = 7.2)	J = 8.0)	J = 7.2)	J = 7.2)	J = 7.2)
H-C(2)	5.41 (br. t,	5.87 (br. d,	5.39 (br. <i>t</i> ,	5.35 (br. <i>t</i> ,	5.38 (br. <i>t</i> ,
	J = 7.2)	J = 8.0)	J = 7.2)	J = 7.2)	J = 7.2)
$CH_{2}(4)$	$2.07 (m)^{a}$	$2.27 (m)^{a}$	$2.07 (m)^{a}$	$2.08 \ (m)^{\rm a}$	$2.07 (m)^{a}$
$CH_2(5)$	$2.21 \ (m)^{a}$	$2.29 (m)^{a}$	2.18 - 2.24(m)	2.17 - 2.23 (m)	2.17 - 2.23 (m)
H-C(6)	5.39 (br. t,	5.37 (br. t,	5.38 (br. <i>t</i> ,	5.37 (br. <i>t</i> ,	5.37 (br. <i>t</i> ,
	J = 6.8)	J = 6.8)	J = 6.8)	J = 6.8)	J = 6.8)
CH ₂ (8)	$2.01 \ (m)^{\rm a}$	$2.13 (m)^{a}$	$2.00 \ (m)^{a}$	$2.00 \ (m)^{\rm a}$	$2.00 \ (m)^{a}$
CH ₂ (9)	$2.08 (m)^{a}$	$1.95 (m)^{a}$	1.30 - 1.38(m)	1.31 - 1.39(m)	1.29 - 1.37 (m)
			$1.99 (m)^{a}$	$2.00 \ (m)^{a}$	$2.00 (m)^{a}$
H-C(10) or	5.37 (br. t,	5.37 (br. t,	1.05 - 1.11 (m)	1.05 - 1.11 (m)	1.03 - 1.09 (m)
$CH_{2}(10)$	J = 7.2)	J = 7.2)	1.44 - 1.54 (m)	1.46 - 1.56(m)	1.44 - 1.54 (m)
H - C(11)			1.54 - 1.64 (m)	1.53–1.63 (<i>m</i>)	1.52 - 1.62 (m)
H-C(12)	3.97 (<i>t</i> ,	3.97 (<i>t</i> ,	3.89 (<i>d</i> ,	3.67 (<i>dt</i> ,	3.94 (<i>dt</i> ,
	J = 6.8)	J = 6.8)	J = 7.2)	J = 7.6, 5.2)	J = 2.4, 6.8)
CH ₂ (13) or	$2.20 \ (m)^{a}$	$2.20 \ (m)^{a}$	5.62 (dd,	$1.66 \ (m)^{\rm a})$	$1.93 (m)^{a}$
H - C(13)			J = 15.6, 7.2)		
H - C(14)	5.10 (br. <i>t</i> ,	5.09 (br. t,	5.78 (br. d,	4.25 (br. d,	3.89 (dd,
	J = 7.2)	J = 7.2)	J = 15.6)	J = 9.6)	J = 5.6, 3.2)
Me(16)	1.71 (br. s)	1.71 (br. s)	1.31(s)	4.98,	1.17(s)
				4.81 (2 br. s)	
Me(17)	1.63 (br. s)	1.63 (br. s)	1.31(s)	1.70 (br. s)	1.22(s)
Me(18)	1.60 (br. s)	1.61 (br. s)	0.84(d,	0.86(d,	0.80(d,
			J = 6.6)	J = 6.6)	J = 6.8)
CH ₂ (19)	4.69 (br. s)	4.59 (br. s)	4.57 (br. s)	4.57 (br. s)	4.56 (br. s)
Me(20)	1.62 (br. s)	2.17 (br. s)	1.65 (br. s)	1.65 (br. s)	1.64 (br. s)
AcO	2.05 (s)	2.05 (s)	2.05 (s)	2.04 (s)	2.02 (s)
^a) Overlapped	signals.				

Table 1. ¹*H*-*NMR Data* (CHCl₃, 400 MHz) of Compounds $1-5^{1}$). δ in ppm, J in Hz.

formula $C_{22}H_{34}O_4$. The IR-absorption bands of **2** indicated the presence of OH (3411 cm⁻¹), C=O (1738 cm⁻¹), and C=C (1688 cm⁻¹) groups. Compound **2** was deduced to be (2*E*,6*Z*,10*E*,12*R*)-7-[(acetyloxy)methyl]-12-hydroxy-3,11,15-trimethyl-hexadeca-2,6,10,14-tetraenal from further spectral data.

The ¹H- and ¹³C-NMR spectra of **2**¹) were very similar to those of **1**, except that the CH₂(1)OH moiety of **1** was replaced by an aldehyde group (δ (H) 9.98 (d, J = 8.0 Hz); δ (C) 191.4 (CH)) in **2**. For that reason, the chemical shifts of the C(2)=C(3) bond were shifted downfield (δ (H) 5.87 (br. d, J = 8.0 Hz); δ (C) 127.8 (CH) and 163.0 (C)). The (*E*)-configuration at C(2) was deduced by comparing the chemical shifts of the implicated isoprene unit with those reported for (2*E*,6*E*,10*E*,12*S*)-12-hydroxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenal and (2*Z*,6*E*,10*E*,12*S*)-12-hydroxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenal [6]. The CD spectrum of the 4-hydroxybenzoate **2a** of **2** showed a negative *Cotton* effect in the $\pi \rightarrow \pi^*$ region around 245 nm, pointing to the absolute configuration of (12*R*) for **2a**.

The molecular formula of compound **3** was determined as $C_{22}H_{38}O_5$ based on the HR-ESI-MS (m/z 400.3065 ($[M + NH_4]^+$)). Its IR spectrum showed absorption bands for an ester group (1737 cm⁻¹), a C=C bond (1667 cm⁻¹), and OH groups (3375 cm⁻¹).

	1	2	3	4	5 ^a)
C(1)	58.9 (t)	191.4 (d)	59.1 (<i>t</i>)	59.2 (t)	59.2 (t)
C(2)	124.0(d)	127.8(d)	124.2(d)	124.2(d)	124.2(d)
C(3)	137.1 (s)	163.0(s)	138.2(s)	138.3(s)	138.4(s)
C(4)	39.2 (<i>t</i>)	40.6 (<i>t</i>)	39.3 (t)	39.3 (t)	39.4 (t)
C(5)	26.0(t)	26.1(t)	25.7 (t)	25.7 (t)	25.8(t)
C(6)	130.3(d)	129.1(d)	130.3(d)	130.4(d)	130.2(d)
C(7)	133.4(s)	135.2(s)	133.9(s)	133.9(s)	134.0(s)
C(8)	34.0(t)	35.1(t)	35.3 (t)	35.4 (<i>t</i>)	35.3(t)
C(9)	25.8(t)	25.5(t)	25.3(t)	25.4(t)	25.3(t)
C(10)	125.2(t)	125.3(d)	31.8 <i>(t)</i>	31.4(t)	32.9(t)
C(11)	138.0(s)	137.6(s)	38.7 (d)	39.1 (d)	37.9 (d)
C(12)	76.9(d)	77.2(d)	76.3 (d)	72.7 (d)	80.3 (<i>d</i>)
C(13)	34.6 (<i>t</i>)	34.5(t)	127.5(d)	37.0 (<i>t</i>)	36.8(t)
C(14	120.1(d)	120.4(d)	139.8 (d)	76.8(d)	78.2(d)
C(15)	134.1(s)	134.7(s)	70.5(s)	147.5(s)	82.3 (s)
C(16)	25.7(q)	25.5(q)	29.8(q)	110.6(t)	21.4(q)
C(17)	17.8(q)	18.2(q)	29.6(q)	17.8(q)	27.9(q)
C(18)	11.5(q)	12.0(q)	15.1(q)	15.1(q)	14.4(q)
C(19)	61.8(t)	61.8(t)	61.8(t)	61.9(t)	61.9(t)
C(20)	16.0(q)	17.7(q)	16.1(q)	16.1(q)	16.1(q)
AcO	20.8(q),	21.1(q),	20.9(q),	20.9(q),	20.9(q),
	171.1 (s)	171.2 (s)	171.2 (s)	171.2 (s)	171.1 (s)

Table 2. ¹³C-NMR and DEPT NMR Data (CHCl₃, 100 MHz) of $1-5^{1}$). δ in ppm.

The structure of **3** was assigned as (2E,6Z,12S,13E)-7-[(acetyloxy)methyl]-3,11,15-trimethylhexadeca-2,6,13-triene-1,12,15-triol from further spectral data.

The NMR data of **3**¹) (*Tables 1* and 2) were similar to those of (2*E*,6*Z*,11*S*,12*R*)-7-[(acetyloxy)-methyl]-3,11,15-trimethylhexadeca-2,6,14-triene-1,12-diol [5], except for the difference of the terminal isoprene unit in **3**, in which the C(14)=C(15) bond of the known compound was transformed into an (*E*)-configured C(13)=C(14) bond (δ (H) 5.62 (*dd*, *J*=15.6, 7.2 Hz) and 5.78 (*d*, *J*=15.6 Hz); δ (C) 127.5 (CH) and 139.8 (CH)), and in which an OH group was present at the quaternary C(15) atom (δ (C) 70.5). In the HMBC plot, the correlations H–C(13)/C(11), C(15), C(12), and C(14) and H–C(14)/C(12), C(16), C(17), C(13), and C(15) supported the structure of the terminal isoprene unit. The CD spectrum of the 4-hydroxybenzoate **3a** of **3** showed a positive *Cotton* effect around 243 nm, which allowed to deduce the absolute configuration (12*S*) for **3a** [9][10].

The molecular formula of compound **4** was determined as $C_{22}H_{38}O_5$ by HR-ESI-MS (m/z 383.2798 ($[M + H]^+$, $C_{22}H_{39}O_5^+$)). The IR spectrum showed absorption bands for an ester group (1737 cm⁻¹), C=C bonds (1657 cm⁻¹), and OH groups (3372 cm⁻¹). Compound **4** was assigned as (2E,6Z,12R,14S)-7-[(acetyloxy)methyl]-3,11,15-trime-thylhexadeca-2,6,15-triene-1,12,14-triol from further spectral data.

The NMR data of 4^1) (*Tables 1* and 2) were similar to those of **3**, except for the resonances of the terminal isoprene unit, in which the (13E)-C(13)=C(14) bond and OH-C(15) of **3** were replaced in **4** by a terminal CH₂(16)=C(15) bond (δ (H) 4.98 and 4.81 (2 br. s); δ (C) 147.5 (C) and 110.6 (CH₂)) and an oxygenated CH group (δ (H) 4.25 (br. d, J=9.6 Hz); δ (C) 76.8 (CH)). In the HMBC plot, the correlations H-C(14)/C(17), C(12), and C(13), and Me(17)(CH₂(16))/C(14) and C(16)(C(17)) supported the structure of the terminal isoprene unit. The CD spectrum of the 4-hydroxybenzoate **4a**

of **4** also showed a positive *Cotton* effect around 243 nm; therefore the absolute configuration (14*S*) was deduced for **4a**.

The HR-ESI-MS of **5** revealed $[M+H]^+$ at m/z 383.2785, establishing the molecular formula $C_{22}H_{38}O_5$. Its IR spectrum indicated the presence of an ester group (1737 cm⁻¹), C=C bonds (1663 cm⁻¹), and OH groups (3394 cm⁻¹). According to four degrees of unsaturation, **5** was confirmed as *rel-*(3*R*,5*S*)-5-{(1*R*,5*Z*,9*E*)-5-[(acetyl-oxy)methyl]-11-hydroxy-1,9-dimethylundeca-5,9-dien-1-yl}tetrahydro-2,2-dimethylfuran-3-ol.

The NMR data of 5^1) (*Tables 1* and 2) were similar to those of **4**, the main difference being due to the terminal isoprene unit, in which the C(15)=C(16) bond of **4** was replaced in **5** by an oxygenated quaternary C-atom (δ (C) 82.3) and one more Me group. In the HMBC plot, the correlations Me(18)/C(10), C(12), and C(11), H-C(14)/C(12), and Me(16)(Me(17)) with C(14), C(15), and C(17)(C(16)) supported the structure of the terminal isoprene unit. In the NOE difference experiments, no NOE effects between H-C(12) and Me(18) were observed, hence H-C(12) and Me(18) were on opposite faces of the ring. The coupling constants (J(12,13a)=J(12,13b)=6.8 Hz, J(14,13a)=5.6 Hz, and J(14,13b)=3.2 Hz) were similar to those of sachalinol B [11], which indicated that they had similar relative configurations of the furan ring. On the other hand, the absolute configurations of **5** were assumed to be the same as those in **4** because **5** is considered to be biosynthesized from **4** by an epoxidation of the olefin, followed by the ether-bond formation.

All the compounds, except for **2**, were assayed for their *in vitro* cytotoxic activities towards human hepatoma SMMC-7721 cells, human promyelocytic leukemia HL-60 cells, and human hepatocytes L02 cells according to the sulforhodamine B (SRB) [12] method. Vincristine sulfate was used as a positive control which exhibited IC_{50} values of 26.7 ± 4.1, 11.2 ± 1.9, and 28.4 ± 4.2 µg/ml for SMMC-7721, HL-60, and L02 cells, respectively. The new compounds were inactive towards SMMC-7721 and L02 cells ($IC_{50} > 100 \mu g/ml$); but the IC_{50} of **1** and **3** against HL-60 cells were 40.7 ± 6.9 and 65.6 ± 8.1 µg/ml, respectively. Thus, **1** and **3** may exhibit weak cytotoxicity. As to compound **2**, so little material was left after the 4-hydroxybenzoylation that its *in vitro* cytotoxic activity could not be determined.

Experimental Part

General. Column chromatography (CC): silica gel (200–300 mesh). TLC: silica gel GF_{254} (10–40 μ); detection under UV light or by heating after spraying with 5% H₂SO₄ in EtOH. Optical rotation: *Perkin-Elmer 341* Polarimeter. IR Spectra: *Nicolet 170sx Nexus 670* FT-IR spectrometer; $\tilde{\nu}$ in cm⁻¹. CD Spectra: *Olis-RSM-1000CD* spectrometer; $\lambda([\theta])$ in nm. NMR Spectra: *Varian Mercury* spectrometer; δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. EI-MS: *HP 5988A* GC/MS instrument; *m/z* (rel. %). HR-ESI-MS: *Bruker Apex* spectrometer.

Plant Material. The seeds of *C. triste* were collected from Chongqing, P. R. China, in August 2005, and identified by Prof. *Guo-Liang Zhang* of the Department of Biology, Lanzhou University. A voucher specimen was deposited with the Institute of Organic Chemistry, Lanzhou University.

Extraction and Isolation. The air-dried seeds of *C. triste* (3.7 kg) were pulverized and extracted $3 \times$ with MeOH (7 d each time) at r.t. The combined extract was concentrated, and the residue (130 g) subjected to CC (silica gel (200–300 mesh; 1300 g), petroleum ether (bp. $60-90^{\circ}$)/acetone 30:1, 15:1, 8:1, and 2:1): *Fractions 1–4. Fr. 2* (petroleum ether ($60-90^{\circ}$)/acetone 15:1; 20 g) was separated by CC (silica gel (200–300 mesh; 200 g), petroleum ether ($60-90^{\circ}$)/AcOEt 15:1 and 8:1): *Fr. 2.1* and *2.2. Fr. 2.1* (petroleum ether ($60-90^{\circ}$)/AcOEt 10:1; 7.8 g) was purified by repeated CC (silica gel, petroleum

ether $(60-90^{\circ})/AcOEt$ 18:1): *Fr.* 2.1.1–2.1.4. *Fr.* 2.1.4 was further purified by repeated CC (silica gel, petroleum ether $(60-90^{\circ})/AcOEt$ 15:1): **2** (10 mg). *Fr.* 2.2 (petroleum ether $(60-90^{\circ})/AcOEt$ 4:1; 9.2 g), after further CC (silica gel (200–300 mesh; 92 g), petroleum ether $(60-90^{\circ})/AcOEt$ 12:1) gave *Fr.* 2.2.1 and 2.2.2. *Fr.* 2.2.2, after further CC (silica gel, petroleum ether $(60-90^{\circ})/AcOEt$ 12:1), gave **1** (48 mg). *Fr.* 3 (petroleum ether $(60-90^{\circ})/AcOEt$ 12:1), gave **1** (48 mg). *Fr.* 3 (petroleum ether $(60-90^{\circ})/AcOEt$ 12:1), gave **1** (48 mg). *Fr.* 3 (petroleum ether $(60-90^{\circ})/AcOEt$ 10:1); *Tr.* 3.1–3.3. *Fr.* 3.3 was purified by repeated CC (silica gel, petroleum ether $(60-90^{\circ})/AcOEt$ 10:1); *Fr.* 3.1–3.3. *Fr.* 3.3. *Vas* as further purified by prep. TLC (petroleum ether $(60-90^{\circ})/AcOEt/MeOH$ 10:3:0.1); **5** (18 mg; *R*_f 0.4) and **4** (22 mg; *R*_f 0.35). *Fr.* 3.3.3 afforded **3** (20 mg; *R*_f 0.33) by prep. TLC (petroleum ether $(60-90^{\circ})/AcOEt/MeOH$ 10:5:0.1).

4-Hydroxybenzoates from Allylic Alcohols. To a soln. of pure compound 1, 2, 3, or 4 (ca. 4 mg) in dry pyridine and CH_2Cl_2 under Ar in a dry test tube fitted with a rubber septum, a slight excess of 4-hydroxybenzoyl chloride was added. After 4 h under magnetic stirring at r.t., the 4-hydroxybenzoate was isolated by prep. TLC: 1a, 2a, 3a, and 4a.

(2E,6Z,10E,12R)-7-[(Acetyloxy)methyl]-3,11,15-trimethylhexadeca-2,6,10,14-tetraene-1,12-diol (1). Colorless gum. $[\alpha]_{20}^{D} = -0.3$ (c = 2.0, CHCl₃). IR (KBr): 3410, 2926, 1737, 1669. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS: 387.2510 ($[M + Na]^+$, $C_{22}H_{36}NaO_4^+$; calc. 387.2506).

CD of 1a (c = 1.1 g/l, MeOH): 244 (-2316).

(2E,6Z,10E,12R)-7-[(Acetyloxy)methyl]-12-hydroxy-3,11,15-trimethylhexadeca-2,6,10,14-tetraenal (2). Colorless gum. [a]²⁰₂₀ = -1.6 (c = 1.6, CHCl₃). IR (KBr): 3411, 2965, 1738, 1668. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS: 385.2351 ([M+Na]⁺, C₂₂H₃₄NaO⁴₄; calc. 385.2350).

CD of 2a (c = 1.8 g/l, MeOH): 245 (-4424).

 $\begin{array}{l} (2\text{E},6\text{Z},12\text{S},13\text{E})\text{-}7\text{-}[(Acetyloxy)methyl]\text{-}3,11,15\text{-}trimethylhexadeca\text{-}2,6,13\text{-}triene\text{-}1,12,15\text{-}triol (3).}\\ \text{Colorless gum. } [\alpha]_{\text{D}}^{20}=-4.0 \ (c=2.0, \ \text{CHCl}_3). \ \text{IR} \ (\text{KBr})\text{: } 3375, \ 2929, \ 1737, \ 1719, \ 1667. \ ^1\text{H-} \ \text{and} \ ^1\text{3}\text{C-NMR}\text{: } Tables \ 1 \ \text{and} \ 2. \ \text{HR-ESI-MS: } 400.3065 \ ([M+\text{NH}_4]^+, \ C_{22}\text{H}_{42}\text{NO}_5^+; \ \text{calc. } 400.3057). \end{array}$

CD of **3a** (c = 1.5 g/l, MeOH): 243 (+5093).

 $\begin{array}{l} (2\text{E},6\text{Z},12\text{R},14\text{S})\text{-}7\text{-}[(Acetyloxy)methyl]\text{-}3,11,15\text{-}trimethylhexadeca\text{-}2,6,15\text{-}triene\text{-}1,12,14\text{-}triol (\textbf{4}).\\ \text{Colorless gum. } [a]_{\text{D}}^{20} = +4.0 \ (c=4.0, \ \text{CHCl}_3). \ \text{IR} \ (\text{KBr})\text{: } 3372, \ 2926, \ 1737, \ 1712, \ 1657. \ ^1\text{H-} \ \text{and} \ ^{13}\text{C-NMR}\text{: } Tables \ 1 \ \text{and} \ 2. \ \text{HR-ESI-MS: } 383.2798 \ ([M+H]^+, \ C_{22}H_{39}O_5^+; \ \text{calc. } 383.2792). \end{array}$

CD of 4a (c = 1.4 g/l, MeOH): 243 (+4092).

rel-(3R,5S)-5-{(1R,5Z,9E)-5-[(Acetyloxy)methyl]-11-hydroxy-1,9-dimethylundeca-5,9-dien-1-yl]tetrahydro-2,2-dimethylfuran-3-ol (**5**). Colorless gum. $[\alpha]_{D}^{20} = -10.0$ (c = 1.0, CHCl₃). IR (KBr): 3394, 2923, 1737, 1663. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS: 383.2785 ($[M + H]^+$, $C_{22}H_{39}O_5^+$; calc. 383.2792).

REFERENCES

- [1] Y. L. Lin, J. C. Ou, J. Nat. Prod. 1996, 59, 991.
- [2] D. K. Kim, N. I. Baek, S. U. Choi, C. O. Lee, K. R. Lee, O. P. Zee, J. Nat. Prod. 1997, 60, 1199.
- [3] O. P. Zee, D. K. Kim, S. U. Choi, C. O. Lee, K. R. Lee, Arch. Pharm. Res. 1999, 22, 225.
- [4] Z. Y. Wu, in 'Compendium of New China (Xinhua) Herbal', Shanghai Scientific and Technical Press, Shanghai, 1990, Vol. 3, Chapt. 12, p. 400.
- [5] X. Gao, C. J. Lin, Z. J. Jia, J. Nat. Prod. 2007, 70, 830.
- [6] G. Culioli, M. Daoudi, A. Ortalo-Magné, R. Valls, L. Piovetti, Phytochemistry 2001, 57, 529.
- [7] G. Culioli, A. Ortalo-Magné, D. Mohammed, H. Thomas-Guyon, R. Valls, L. Piovetti, *Phytochem-istry*, 2004, 65, 2063.
- [8] Y. Tanaka, H. Sato, A. Kagey, T. Tomita, J. Chromatogr. 1985, 347, 275.
- [9] N. C. Gonnella, K. Nakanishi, J. Am. Chem. Soc. 1982, 104, 3775.
- [10] I. Kubo, T. Matsomoto, N. Ichikawa, Chem. Lett. 1985, 104, 249.
- [11] W. Fan, Y. Tezuka, K. M. Ni, S. Kadota, Chem. Pharm. Bull. 2001, 49, 396.
- [12] P. Skehan, R. Storeng, D. Sncdiero, J. Natl. Cancer Inst. 1990, 82, 1107.

Received April 10, 2008